

THE WORLD'S **SMARTEST** AND **SMALLEST HEAT EXCHANGE SOLUTIONS** FOR DRINKS DISPENSE.

WITH SO MANY OTHER OPPORTUNITY APPLICATIONS

Why am I here

 Primarily to present the CoolTube technology to the group to better understand other market opportunities where the device can be used and or adapted!

How the CoolTube works with Drinks Dispense

Modeling & Tech Analysis of the CoolTube

Innovation project 2011

- In April 2011 Brewfitt embarked upon a project in collaboration with Prof. R Mishra in the School of Computing and Engineering at Huddersfield University.
- The project involved using Computational Fluid Dynamics to gain a deeper understanding of the heat transfer processes that occur inside the unique CoolTube.
- A geometrically simplified version of the internal helical coils was used as a model to calculate the temperature, pressure and flow characteristics observed over a cross sectional area of the cool tube.

Heat Transfer Coefficient

- Parameters obtained from CFD calculations were used to estimate the overall heat transfer coefficient of the CoolTube.
- The product flow rate was set to 35 ml/s (16 secs/pint) in all CFD calculations.

4Flow flow rate (L/Min)	Overall heat transfer coefficient, U (W m ⁻² K ⁻¹)
6	3122
9	3151
12	3434

• "The values obtained indicate that the heat transfer values are quite high for this type of configuration" *Professor Rakesh*

Effectiveness & Efficiency

- The estimates values of U were used to calculate the effectiveness of the cool tube.
- The effectiveness is a measure of how cool the product out temperature is compared to the lowest theoretically possible temperature.
- As the 4flow is circulated at -4°C through the CoolTube, a heat exchanger that is 100% effective would chill the product to -4°C.

Effectiveness & Efficiency

4Flow flow rate (L/Min)	Effectiveness		
6	78%		
9	80%		
12	84%		

- "Values in excess of 70% can be considered very good." Professor Rakesh
- The effectiveness can be improved by increasing the flow rate of the coolant however it can be seen that maximum flow rate is not critical for effective performance.
- These effectiveness values can be used to predict the product outflow temperature when the product in temperature is known.

Product temperature

Performance Matrix

6 L/Min			Beer In Temp C				
			12	15	18	21	24
Coolant T							
	mp C	-4	-0.48	0.18	0.84	1.5	2.16
	Tei	-2	1.08	1.74	2.4	3.06	3.72
		0	2.64	3.3	3.96	4.62	5.28

12 L/Min			Beer In Temp C			
		12	15	18	21	24
olant np C	-4	-1.44	-0.96	-0.48	0	0.48
Ter Coo	-2	0.24	0.72	1.2	1.68	2.16
	0	1.92	2.4	2.88	3.36	3.84

Following on from the CFD modelling the matrices give a range of beer temperatures achievable by the CoolTube.

The top left matrix shows a system with a coolant flow rate of 6 L/min and the bottom matrix has a coolant flow rate of 12 L/Min

For example: With beer temperature at 12C and coolant temp at 0C,

the beer out temperature would

be 2.64C for 6 L/min and 1.92C for 12 L/min

Note: All products dispensed at 16 secs/pint

Thank You

• Q&A's

